Assessment of soil erosion sensitivity ... 37
Effect of selective logging on soil organic carbon dynamics in tropical forests in Central and Western Africa ... 39
Flash floods, soil erosion and sediment transport under the climate change as a threat for residents and infrastructure – assessment for scale of the Czech Republic ... 43
Prediction of soil salinization and sodification processes as affected by groundwater under different climate and management conditions: a new modeling approach .. 44
Salinity Properties as Indicators for Quality of Saline Soils in Vojvodina Province (Northern Part of Serbia) .. 48
Assessment of the recent gully erosion and landslides development in the Barlad Plateau of eastern Romania .. 50
Land use induced change of suspended sediment loads in the Petzenkirchen catchment, Lower Austria 51
Economic approaches to the assessment of risk of chemical pollution of soils .. 54
The extent of contamination of road side agrocenoses in the Black-earth Zone of South Russia 57
Using the results of soil-ecological monitoring of specially protected natural territories in southern sikhote-alin for environmental regulation .. 59
Plant function in the 90Sr distribution in the soil ... 62
Quality of garden soil in Vojvodina Province, Serbia .. 64
Impact of long-term freshwater irrigation on soil fertility .. 67
Wind erosion on heavy textured soils .. 71
Soil ecological-microbiological monitoring in forest and forest-park landscapes of Moscow megalopolis in conditions of various recreational impacts .. 72
Soil transformation of the man-made landscapes industrial zones after the liquidation the coal mine 75
Session #4 «Climate-smart agriculture: scientific, practical and political aspects» .. 77
When is agriculture climate-smart? A call for proper soil management .. 77
Agricultural crops and soil treatment impacts on the daily and seasonal dynamics of CO2 fluxes in the field agroecosystems at the Central region of Russia ... 79
LCA of the beef cattle Carbon Footprint in conditions of Central Russia ’ agrolandscapes 81
Session #5 «Soil ecological functions and ecosystem services: from concepts to application»........82
Soil transport function and its use in environment protection...82
Soil water movement forecast by physically based models: significance of soil hydrological and boundary conditions information ..86
Soil Environmental Index for Slovak Agricultural Land ...88
Interrelation of the foliar processing effect by selenium and nutrient status of the soil.92
Ecosystem services provided by biocrusts: The missing gap in dryland management94
The content of heavy metals and rare trace elements in the Sikhote-alin and Lazovsky reserves soils96

Session #6 «Agricultural soils’ management in organic farming»...98
Strategy for making ecological food safety products ..98
Organic spring wheat yield and land agroecological quality assessment in conditions of high soil cover variability at the Vladimirskoe Opolje ..100
Effectiveness of biological-adaptation methods of precision agrochemistry in organic production in the industrial gardening ..104
ReSolVe project – Restoring optimal Soil functionality in degraded areas within organic Vineyards ...107

Session #7 «Biodiversity in managed soils and ecosystems»..109
No till as strategy to improve the irrigation water retecion on the soil ..109
Soil enzymatic activities and bacterial functional diversity under different agricultural management practices in Northern France ..111
The effect of mineral fertilizers on reproduction of soil saprophytic bacteria ..113

Session #8 «Modeling and evaluation of the spatial-temporal variability of soil features and processes»...115
Effects of long-term agricultural management on soil surfaces ...116
Mapping the water erosion’s threat on the Madeira’s island (Portugal) (1: 100.000 scale)117
Spatial variability of compacted subsoil depth: a combination of field observation, electrical resistivity and X-ray computed tomography ...119
Recent and future rainfall erosivity in the Czech Republic and its impact on sediment transports and erosion risks ... 121

Multi-electrode 3D resistivity survey on soil structure in conservation agriculture ... 123

Assessment of soil within-field spatial-temporal variability in conditions of Non-Chernozemic Zone, RF ... 127

Cartographical support to study the soil cover agrogenic transformation (a choice of landscape analogues with different land use practices) ... 131

Indication of previous land use on the basis of the Bayesian approach ... 134

Assessment of the influence of seasonal variations and microclimate in the synthesis of protective pigments in biocrusts from arid regions ... 138

Long-term effects of wildfires on the properties of Andosols under monteverde forest vegetation (Canary Islands, Spain) ... 142

Soil water migration of substances in the field and forest ecosystems at the Moscow megalopolis ... 146

Session #9 «Environmental impact assessment and soil environmental quality certification» ... 150

Soil matters: Soil types as the context for soil management and soil degradation estimates. ... 150

Seasonal variability and factors affecting the quality of the Moscow River within the city ... 152

Session #10 «Bioremediation and reclamation of degraded or contaminated lands» ... 156

Prospects for the use of different varieties of spring rapeseed for biofuel production and contaminated soils phytoremediation ... 156

Hemozems analysis in the territory of Shtykovskoy natural and industrial system ... 160

Guidelines and recommendations for implementing experimental stations for soil reclamation - desalination of anisotropic soils in Vojvodina ... 162

Changes in soil aggregate stability, glomalin-related protein and organic carbon content in restored mine soils from semiarid Mediterranean region ... 164

Effects of amendments and mulches on the microbial communities in mine soils ... 169

Possibility of use of saperda mustard brassica juncea (l.) and four-rowed barley hordeum vulgare (l.) For soils phytoremediation ... 172

Strategic choice of phytoremediation technology for polluted compounds, grounds and soils with different functional land-use ... 174
Ecological efficiency of sewage sludge-based compost use for Scotch pine (Pinus sylvestris) seedlings cultivation ... 176

Assessment of compost impact on the formation of lawn grass canopy with multispecific cereal grasses .. 178

Session #11 «Urban soils: from classification and monitoring to assessment of functions and services» ... 181

Criteria and guidelines to assess the functioning regimes of urban soils. ... 181

Soil enzymatic activities and bacterial functional diversity under different agricultural management practices in Northern France ... 185

Urban soil respiration and its autotrophic and heterotrophic components compared to adjacent forest and cropland within the Moscow megapolis .. 190

Analyzing dynamics in soil features in urban park before and after reconstruction .. 192

Session #12 « Advances in monitoring, modeling and prediction of C stocks and fluxes in natural and managed ecosystems » ... 193

Equilibrium responses of terrestrial carbon storage to increasing of atmospheric CO₂ ... 193

High-detailed mapping of soil organic carbon at field scale with limited data, coupling gamma-ray and Vis-NIR spectroscopy ... 194

Comparative analysis CO₂ emission from urban soils over various bioclimatic conditions .. 196

Carbon balance assessment by eddy covariance method for agroecosystems with different crops on sod-podzolic soils ... 198

Soil carbon dioxide flux assessment from representative field agroecosystems with cultivated soddy-podsoluvisols of Central Russia .. 201

Environmental assessment of soil greenhouse gases fluxes in forest – fallow succession at the Central Forest Reserve in European Russia ... 205

Effect of agricultural technology and crops on CO₂ emissions in agroecosystems of the RTSAU 209
Landscape planning and designing for nature management optimizing in agriculture

Author: V.I. Kiryushin,

Russian Timiryazev State Agricultural University, Timiryazevskaya str.49, Moscow, 127550 Russia

Adoption of the Declaration on sustainable development in Pto (1992) and the European convention on landscapes in 2004 promoted the active development of landscape planning.

Taking into attention the world and domestic experience and our researches we develop the following toolkit of landscape planning: the assessment of ecological and social-economic functions of landscapes, their stability to loadings, the analysis of environmental conflicts, the forecast of man-made influence on the adjacent landscapes, planning the co-adaptive natural-economic systems taking into account the environmental regulations and planning of natural-reserved and protective zones, etc.

The following ecological functions are considered as the basic ones: bio-ecological (bio-topical and biocoenotic, bioproductive, bio-energetic, biogeochemical, concentration, oxidation-reduction, destruction, sanitary); atmospheric (gas, heat-exchange, hydro-atmospheric), lithospheric (relief-forming, litologic); hydrological and hydro-geological.

On the basis of identification and assessment of landscapes ecological functions the social and economic functions are determined as ones directed on satisfaction of one or another needs of a society. They include: functions of resources supply, including abiotic (heat, water, fuel, energy), biological natural (wood, peat, fish etc.), biological cultivated (crop production, animal industries, forestry); support functions for the enterprises of the industry, power et cetera, and also water-economic, transport, recreational, information and culture-forming functions.

The modern project of intra-farm land management is considered as the project of agricultural landscape optimization, covering its various categories, including field agrolandscapes, water landscapes, recreational and other landscapes.

The agrolandscapes design is considered as the bases of land management project which is carried out with reference to their various agroecological categories: summit, erosive, salted, solonetzic, lithogenic, cryogenic, etc. Design includes: land-use organization, crop selection, crop rotations, systems of soil tillage, fertilizing, plant protection, territory organization - including crop strips, no-till, mulching, landscape-differentiated fertilizing systems. Design is carried out on the basis of soil-landscape mapping, GIS with land agroecological assessment and existed experience of adaptive-landscape farming systems.
Multi-electrode 3D resistivity survey on soil structure in conservation agriculture

Authors: I. Piccoli, N. Dal Ferro, B. Lazzaro, L. Furlan, S. Macolino, A. Berti, F. Morari

1DAFNAE Dept., University of Padova, Viale Dell’Università 16, 35020 Legnaro (PD), Italy
2Sezione Agroambiente, Servizio Politiche Agroambientali, Regione Veneto, Via Torino 110, Mestre (VE), Italy
3Veneto Agricoltura, Viale dell’Università 14, 35020 Legnaro (PD), Italy
ilaria.piccoli@studenti.unipd.it

Introduction
No tillage (NT) influences different physical-chemical soil properties, which in turn affect roots growth and crop yield. Despite the benefits observed after the adoption of NT, subsurface soil layers suffer from compaction, especially during the conversion period from conventional tillage (CT) to NT. This is generally highlighted by the increase in bulk density (BD) within the soil profile as observed by Dal Ferro et al. (2014) in a sandy loam soil during a 2-yrs transitional period. In particular, the authors noticed that the root system of maize (Zea mays L.) experienced a reduction of root length density and root mean diameter.

In order to investigate the effects of NT on soil structure and root distribution, traditional soil physical methods are time-consuming and expensive. Modern geophysical techniques like electrical resistivity tomography (ERT) are a cost-effective and rapid method to sense the 3D spatial variability of soil properties. ERT is a non-destructive method that provides subsurface information at different scales without requiring invasive soil surveys. Moreover ERT can visualize spatial distribution of root systems (Amato et al. 2008) when soil resistivity response is not masked by other properties such as soil water content, soil water solution salinity and stone fraction (Loperte et al. 2006).

In this study, the soil structure and root distribution in conservation and conventional systems were studied using multi-electrode ERT 3D surveys. The potentials of ERT for a rapid assessment of soil physical properties were also evaluated in comparison to the traditional physical methods.

Materials and Methods
Field experiment was established in 2010 in order to compare conservation agriculture versus conventional systems. The field-size experiment was set up in four experimental farms (henceforth called F1, F2, F3 and F4) located on the low plain of north-eastern Italy and characterized by sub-humid climate with a mean rainfall of 850 mm yr⁻¹. Soil texture ranged from sandy in F1 to silty-clay loam in the others. A 4-yrs rotation (wheat, Triticum aestivum L.; rapeseed, Brassica napus L.; maize, Zea mays L. and soybean, Glycine max (L.) Merr.) was managed according to conservation agriculture’s principles, namely direct sowing on
untilled soil, residue retention and use of cover crops. For comparison the 4-yrs rotation was also managed according to conventional tillage, with a 35-cm depth ploughing in autumn and seedbed preparation in spring.

To evaluate the effects of tillage practices on soil structure and root development, ERT 3D surveys were performed in August 2014 in 3 positions within each field cropped with maize (8 fields in total). Tomograms were acquired using three cables, each connected with 24 electrodes, positioned parallel at 0.4 m from each other. The volume investigated was 2.9 m3 (4.6 m × 0.8 m × 0.78 m). Acquisition parameters were: dipole-dipole configuration, 0.20 m inter-electrode spacing and 500 ms time of injection using a Syscal-Pro Junior switch-72 (Iris Instrument, Orléans, France) resistivity-meter. 3D data inversion was performed with ERTLab software (Multi-Phase Technologies and Geostudi Astier). Along the central cable, the soil profile (up to 90 cm depth) was investigated for: a) bulk density in 3 points using a hydraulic sampler (core method), b) penetration resistance in 9 points using a digital cone-penetrometer (Eijkelkamp), c) root measurements (root length density, diameter and mass) in 2 points by image analysis (WinRhizo, Regent Instrument).

Results and discussion
Soil moisture within the profile, due to high summer rainfall (+80% above the average), reached levels that partially smoothed the contrast between treatments. Mouldboard ploughing in sandy soil of F1 originated a plough sole around 35 cm depth as highlighted by BD, which increased from 1.50 g cm$^{-3}$ at 0-20 cm to 1.73 g cm$^{-3}$ at 20-40 cm. Accordingly, PR increased from 0.5 MPa to 2 MPa at 10 cm depth up to 3.0 MPa at 40 cm. Results showed that ERT was able to sense the peculiar hardpan (Fig. 1) since resistivity doubled from 65 Ωm to 120 Ωm between 20 and 40 cm. In spite of the high BD and PR values, this layer was more resistive than the others because of high sand content and low soil moisture. The plough sole was not depicted in the NT profile where, conversely, resistivity increased with depth from 30 Ωm at the surface to 169 Ωm at 78 cm depth. Higher surface conductivity was influenced by the higher water content, which decreased within the soil profile (from 27% to 13%).

Multi-electrode resistivity survey was less effective in the finer soils of F2, F3 and F4. Indeed ERT profiles were more homogeneous in spite of contrasting BD and PR distributions. BD highlighted a compaction in NT with values increasing from 1.3-1.4 g cm$^{-3}$ in the top layer to 1.6-1.7 g cm$^{-3}$ at 20-40 cm and decreasing downwards. PR measurements were not always consistent with BD because it seems that the water content masked the effect of BD on PR. Accordingly, resistivity measurements also decreased from the top (about 127 Ωm) to the deepest layer (about 5 Ωm) in both CT and NT.

Generally root length density and root mean diameter were affected by the management systems. However the peculiar subsurface hardpan (ca. 20-40 cm) under conventional tillage in F1 did not increase the differences observed between CT and NT on root growth parameters down to 90 cm depth.
Figure 1 - 2D section (a) and 3D volume (b) of F1 site under CT management. Resistivity is expressed in Ωm. Plough sole is visible between 20 and 40 cm with resistivity higher than 120 Ωm (orange-red colour).

Conclusion
Summer 2014 was one of the rainiest in the last century and soil water content within the profile consequently reached values that partially smoothed the contrast between treatments. Only in sandy soil ERT 3D highlighted tillage effects on soil structure (e.g. plough sole) confirming its potential as a rapid survey method. Conversely, ERT 3D was less effective in finer texture soils since resistivity response to soil structure was partially masked by the moist conditions. These preliminary results indicate that a better understanding of ERT response to tillage systems, disentangling the role of the single components on soil electrical conductivity (e.g. root water uptake), requires the integration of 3D resistivity survey with traditional soil analysis.

Acknowledgements
Research funded by the project HELPSOIL, “Helping enhanced soil functions and adaptation to climate change by sustainable conservation agriculture techniques”. LIFE12 ENV/IT/000578.